Notes 1

CONVEX FUNCTIONS

A function f defined in an interval [ is called a convex function if it satisfies

Observe that z = (1 —\)x 4+ Ay is a point on the line segment connecting x and y.
As X increases from 0 to 1, z runs from x to 3. The line segment in R? connecting
(x, f(z)) and (y, f(y)) is given by the graph of the linear function

R ) (RN
= (—f(x; — g(y))(z —y)+ f(y).

It is readily checked that f is convex if and only if

f(z) <1(2),

for any z lying between x and y. (Here [ depends on x and y). This condition
has a clear geometric meaning. Namely, the line segment connecting (x, f(z))
and (y, f(y)) always lies above the graph of f over the interval with endpoints z
and y.

Proposition 1.1. Let f be defined in an open interval I. The following conditions
are equivalent:

(a) f is convex on I

(b) forx,y,z €I, withz < z <y,

f) = @) _ )~ 1)

Z—x o Yy—x

, (L1)

(c) forx,y,z € I, with z < z < y,

fly) = flz) _ fly) = f(2)
y—x = y—z

(1.2)

Proof. (i) = (ii): Assume f is convex. Let z < y be two points in /. Each z in
[z,y] can be expressed in the form z = (1 — X\)x 4+ Ay for a unique A € [0,1]. By



the definition of convexity we have

f(2) = flx) _ f((A =Nz +Ay) — f(2)

z2—z (1=XNz+ A y—=z
o L= Nf@) + M) - f)
B Ay — )
_ fy) - f(=)
y—x

and (1.1) follows. Similarly (i) = (iii).
(ii)) = (i): Assume (ii) holds. Let z,y € I with z < y, and A € [0,1]. Let
z=Ax+ (1 — A)y. Then (1.1) implies

(Y —2)(f(2) = f(2)) < (z = 2)(f(y) = f(=)),

- (v —2)f(2) < (v — 2)f (@) + (= — 2) [ (4),
of y—z Z—x

L py

Since z = Az + (1 — \)y, we have

f(z) <

f).

—z z—x
Y =)\ and
y—x y—x

=1-A\

So the above implies
f(z) < M)+ (1= f(y),
and hence f is convex. Similarly (iii) = (i). O
The geometric meaning of the first inequality is that if we let [, be the line
segment connecting (xo, f(xo)) and (z, f(z)) for x > xy. Then the slope of I,

increases as = increases. For (2), considering now = < xg, then the slope of I,
increases as x increases to xg. Using these properties, we immediately obtain

Proposition 1.2. Let f be convexr on I. Then forxz < z <y in I,

1) = 1) _ J) = ()

2= o Yy—Z
Proof. We have
[G) = f@) _ )= f@)
Z2— o Yy—x
< fW-10)
Y— 2



after using (1.1) and then (1.2). O
Exercise: Show that the converse of the above Proposition is also true.

Theorem 1.3. Every convex function f on the open interval I has right and left
derivatives, and they satisfy

/

fo(x) < fjr(x), Ve el, (1.3)

and / ,
fi(x) < f(y), Yo <y in L. (1.4)

In particular, f is continuous in I.

Proof. From Proposition 1.1 and Proposition 1.2 the function

f{t) — f(x)

t) = t >

(1) P g2

is increasing and is bounded below by (f(z) — f(zo))/(x — xo), where zq is any
fixed point in [ satisfying xy < z. It follows that lim; ..+ ¢(t) exists. In other

words, fjr(x) exists. Notice that we still have

/ f(z) = f(zo)
r) > 0
fila) 2 =
after passing to limit. As the quotient in the right hand side is increasing as xg
increases to x, by (1.2), we conclude that

lim
To—T T — Zo

exists and (1.3)
filz) > f(x)

holds. After proving that the right and left derivatives of f exist everywhere in
I, welet z — z in (1.1) to get

y—
and let z — y~ in (1.2) to get
f(y)_f(x) <f’ (y>
y—x T

whence (1.4) follows.
(]



Theorem 1.4. FEvery convex function on I is differentiable except possibly at a
countable set.

Proof. Noting that every interval I can be written as the union of countably many
closed and bounded intervals, it suffices to show there are at most countably
many non-differentiable points in any closed and bounded interval [a, b] strictly
contained inside /. Fix a small ¢ > 0 so that [a—d, b+d] C I. Since f is continuous
in [a—d,b+ 6], it is bounded in [a — §, b+ 6]. Let M > |f(x)|,Vz € [a — d,b+ J].
By convexity

fb+6) — f(b) < 2M

<=5 <5

and
o f@) = fla—3) _ —2M
f-(a) 2 a—(a—9) = 6

As a result, for z € [a, V],

f(a) < filz) < fi(b),

and the estimate
—2M 2M

5 < fj/[(x) < 5

holds. Non-differentiable points in [a, b] belong to the set
D={o:fi(x)~f(x) >0} = | D
k=1

where Dy, = {z : f,.(z) — f_(z) > +}. We claim that each Dj is a finite set. To
see this let us pick n many points from Dy : 21 < z9 < ... < x,,. Then

Fie(wa) = fo(an) 2 filen) = fo(@) + fo (@) = fo (@)
> 2 Filn) = £(0)

2 , ’
> =+ fi@n2) = f (1)

n — 1 ’ /
> 5 + fi(x1) — fo(z1)
n
> —,
~— k
It follows that
) p AMEk
n < k(f (o) — f(o) < 5



O

When f is differentiable, Theorem 1.3 asserts that f  is increasing. The converse
is also true.

Theorem 1.5. Let f be differentiable in I. It is convez if and only if [ is
mereasing.

Proof. Let z = (1 — XNx + Ay € [x,y]. Applying the mean-value theorem to f
there exist ¢; € (x,2) and ¢y € (z,y) such that

f(z) = f@) + f(e)(z — ),
and /

) = f(z) + f )y —2).
Using f'(c1) < f'(cz) we get

£ = @) _

z—x y—2z

fly) — f(2)

)

which, after some computation, simplifies to yield

f(z) < A=A f(z)+ Af(y).

Theorem 1.6. Let [ be twice differentiable in I. It is convex if and only if
f// Z 0.

Proof. When f is convex, f is increasing and so f > 0. On the other hand,
f" >0 implies that f  is increasing and hence convex. m

A function is strictly convex on I if it is convex and
S =Nz +Ay) <X =) f(x)+Af(y), Ve<y, Ae(0,1).

From the proofs of the above two theorems we readily deduce the following propo-
sition.

Proposition 1.7. The function f s strictly convex on I provided one of the
followings hold:

1. f is differentiable and f' is strictly increasing; or
2. f is twice differentiable and f* > 0.

By this proposition, one can verify easily that the following functions are
strictly convex.



e ¢ where o # 0 on (—o0, 00),
e 27 where p > 1 or p < 0 on (0, 00).

e —logx on (0,00).

Two concluding remarks are in order.
First, in some books convexity is defined by a weaker condition, namely, a
function f on [ is convex if it satisfies

r+y

15

)S%(f(:c)—kf(y)), Va,y € 1. (1.5)

Indeed, this implies

provided f is continuous on I. However, this conclusion does not hold without
continuity.

Second, for any convex function f on I, Jensen’s inequality holds: Letting
T, T, @y € T and Ay, Ag, -+, Ay € (0, 1) satisfying D7, Aj = 1,

FOuzy 4+ 4+ Xxy) < Aif(x) + -+ A f(zy).

When f is strictly convex, equality sign in this inequality holds if and only if z; =
Ty = -+ = r,. Many well-known inequalities including the AM-GM inequality
and Holder inequality are special cases of Jensen’s inequality. Some of them can
be found in Exercise 4.



