
Notes 1

CONVEX FUNCTIONS

A function f defined in an interval I is called a convex function if it satisfies

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y), ∀x, y ∈ I, λ ∈ [0, 1].

Observe that z = (1−λ)x+λy is a point on the line segment connecting x and y.
As λ increases from 0 to 1, z runs from x to y. The line segment in R2 connecting
(x, f(x)) and (y, f(y)) is given by the graph of the linear function

l(z) =
(f(y)− f(x)

y − x

)
(z − x) + f(x)

=
(f(x)− f(y)

x− y

)
(z − y) + f(y).

It is readily checked that f is convex if and only if

f(z) ≤ l(z),

for any z lying between x and y. (Here l depends on x and y). This condition
has a clear geometric meaning. Namely, the line segment connecting (x, f(x))
and (y, f(y)) always lies above the graph of f over the interval with endpoints x
and y.

Proposition 1.1. Let f be defined in an open interval I. The following conditions
are equivalent:

(a) f is convex on I

(b) for x, y, z ∈ I, with x < z < y,

f(z)− f(x)

z − x
≤ f(y)− f(x)

y − x
, (1.1)

(c) for x, y, z ∈ I, with x < z < y,

f(y)− f(x)

y − x
≤ f(y)− f(z)

y − z
. (1.2)

Proof. (i) ⇒ (ii): Assume f is convex. Let x < y be two points in I. Each z in
[x, y] can be expressed in the form z = (1− λ)x+ λy for a unique λ ∈ [0, 1]. By
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the definition of convexity we have

f(z)− f(x)

z − x
=

f((1− λ)x+ λy)− f(x)

(1− λ)x+ λy − x

≤ (1− λ)f(x) + λf(y)− f(x)

λ(y − x)

=
f(y)− f(x)

y − x
,

and (1.1) follows. Similarly (i) ⇒ (iii).
(ii) ⇒ (i): Assume (ii) holds. Let x, y ∈ I with x < y, and λ ∈ [0, 1]. Let

z = λx+ (1− λ)y. Then (1.1) implies

(y − x)(f(z)− f(x)) ≤ (z − x)(f(y)− f(x)),

i.e.
(y − x)f(z) ≤ (y − z)f(x) + (z − x)f(y),

or

f(z) ≤ y − z
y − x

f(x) +
z − x
y − x

f(y).

Since z = λx+ (1− λ)y, we have

y − z
y − x

= λ and
z − x
y − x

= 1− λ.

So the above implies
f(z) ≤ λf(x) + (1− λ)f(y),

and hence f is convex. Similarly (iii) ⇒ (i).

The geometric meaning of the first inequality is that if we let lx be the line
segment connecting (x0, f(x0)) and (x, f(x)) for x > x0. Then the slope of lx
increases as x increases. For (2), considering now x < x0, then the slope of lx
increases as x increases to x0. Using these properties, we immediately obtain

Proposition 1.2. Let f be convex on I. Then for x < z < y in I,

f(z)− f(x)

z − x
≤ f(y)− f(z)

y − z
.

Proof. We have

f(z)− f(x)

z − x
≤ f(y)− f(x)

y − x

≤ f(y)− f(z)

y − z
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after using (1.1) and then (1.2).

Exercise: Show that the converse of the above Proposition is also true.

Theorem 1.3. Every convex function f on the open interval I has right and left
derivatives, and they satisfy

f
′

−(x) ≤ f
′

+(x), ∀x ∈ I, (1.3)

and
f
′

+(x) ≤ f
′

−(y), ∀x < y in I. (1.4)

In particular, f is continuous in I.

Proof. From Proposition 1.1 and Proposition 1.2 the function

ϕ(t) =
f(t)− f(x)

t− x
, t > x,

is increasing and is bounded below by (f(x) − f(x0))/(x − x0), where x0 is any
fixed point in I satisfying x0 < x. It follows that limt→x+ ϕ(t) exists. In other
words, f

′
+(x) exists. Notice that we still have

f
′

+(x) ≥ f(x)− f(x0)

x− x0
,

after passing to limit. As the quotient in the right hand side is increasing as x0
increases to x, by (1.2), we conclude that

lim
x0→x−

f(x)− f(x0)

x− x0
= f

′

−(x)

exists and (1.3)
f
′

+(x) ≥ f
′

−(x)

holds. After proving that the right and left derivatives of f exist everywhere in
I, we let z → x+ in (1.1) to get

f
′

+(x) ≤ f(y)− f(x)

y − x
;

and let z → y− in (1.2) to get

f(y)− f(x)

y − x
≤ f

′

−(y),

whence (1.4) follows.
2
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Theorem 1.4. Every convex function on I is differentiable except possibly at a
countable set.

Proof. Noting that every interval I can be written as the union of countably many
closed and bounded intervals, it suffices to show there are at most countably
many non-differentiable points in any closed and bounded interval [a, b] strictly
contained inside I. Fix a small δ > 0 so that [a−δ, b+δ] ⊂ I. Since f is continuous
in [a− δ, b+ δ], it is bounded in [a− δ, b+ δ]. Let M ≥ |f(x)|,∀x ∈ [a− δ, b+ δ].
By convexity

f
′

+(b) ≤ f(b+ δ)− f(b)

(b+ δ)− b
≤ 2M

δ
,

and

f
′

−(a) ≥ f(a)− f(a− δ)
a− (a− δ)

≥ −2M

δ
,

As a result, for x ∈ [a, b],

f
′

−(a) ≤ f
′

±(x) ≤ f
′

+(b),

and the estimate
−2M

δ
≤ f

′

±(x) ≤ 2M

δ
.

holds. Non-differentiable points in [a, b] belong to the set

D = {x : f
′

+(x)− f ′−(x) > 0} =
∞⋃
k=1

Dk,

where Dk = {x : f
′
+(x) − f ′−(x) ≥ 1

k
}. We claim that each Dk is a finite set. To

see this let us pick n many points from Dk : x1 < x2 < ... < xn. Then

f
′

+(xn)− f ′−(x1) ≥ f
′

+(xn)− f ′−(xn) + f
′

−(xn)− f ′−(x1)

≥ 1

k
+ f

′

+(xn−1)− f
′

−(x1)

≥ 2

k
+ f

′

+(xn−2)− f
′

−(x1)

...

≥ n− 1

k
+ f

′

+(x1)− f
′

−(x1)

≥ n

k
.

It follows that

n ≤ k
(
f
′

+(xn)− f ′−(x1)
)
≤ 4Mk

δ
.
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When f is differentiable, Theorem 1.3 asserts that f
′

is increasing. The converse
is also true.

Theorem 1.5. Let f be differentiable in I. It is convex if and only if f
′

is
increasing.

Proof. Let z = (1 − λ)x + λy ∈ [x, y]. Applying the mean-value theorem to f
there exist c1 ∈ (x, z) and c2 ∈ (z, y) such that

f(z) = f(x) + f
′
(c1)(z − x),

and
f(y) = f(z) + f

′
(c2)(y − z).

Using f
′
(c1) ≤ f

′
(c2) we get

f(z)− f(x)

z − x
≤ f(y)− f(z)

y − z
,

which, after some computation, simplifies to yield

f(z) ≤ (1− λ)f(x) + λf(y).

2

Theorem 1.6. Let f be twice differentiable in I. It is convex if and only if
f
′′ ≥ 0.

Proof. When f is convex, f
′

is increasing and so f
′′ ≥ 0. On the other hand,

f
′′ ≥ 0 implies that f

′
is increasing and hence convex.

A function is strictly convex on I if it is convex and

f((1− λ)x+ λy) < (1− λ)f(x) + λf(y), ∀x < y, λ ∈ (0, 1).

From the proofs of the above two theorems we readily deduce the following propo-
sition.

Proposition 1.7. The function f is strictly convex on I provided one of the
followings hold:

1. f is differentiable and f ′ is strictly increasing; or

2. f is twice differentiable and f
′′
> 0.

By this proposition, one can verify easily that the following functions are
strictly convex.
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• eαx where α 6= 0 on (−∞,∞),

• xp where p > 1 or p < 0 on (0,∞).

• − log x on (0,∞).

Two concluding remarks are in order.
First, in some books convexity is defined by a weaker condition, namely, a

function f on I is convex if it satisfies

f(
x+ y

2
) ≤ 1

2

(
f(x) + f(y)

)
, ∀x, y ∈ I. (1.5)

Indeed, this implies

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y), ∀x, y ∈ I,

provided f is continuous on I. However, this conclusion does not hold without
continuity.

Second, for any convex function f on I, Jensen’s inequality holds: Letting
x1, x2, · · · , xn ∈ I and λ1, λ2, · · · , λn ∈ (0, 1) satisfying

∑n
j=1 λj = 1,

f(λ1x1 + · · ·+ λnxn) ≤ λ1f(x1) + · · ·+ λnf(xn).

When f is strictly convex, equality sign in this inequality holds if and only if x1 =
x2 = · · · = xn. Many well-known inequalities including the AM-GM inequality
and Hölder inequality are special cases of Jensen’s inequality. Some of them can
be found in Exercise 4.
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